

CRITICAL DESIGN REVIEW

BYU ROCKETRY EXPERIMENTAL HIGH-POWER TEAM

2020-2021

Team Lead: Structures: GNC: Payload: Dallin Cordon Brennen Dover, Jayson Davis, Josh Halliday Brayden Smith, Derrick Walker, Greg Hill Brandon Sutherland, Dunstan Chi

TABLE OF CONTENTS

<u>Project</u> –	Mission Objective	<u>4</u>				
Overview –	<u>Budget</u>	<u>5</u>				
Overview	<u>Major Milestones</u>	<u>6</u>				
Structures –	Rocket Design	<u>8</u>	Payload Ejection	<u>11</u>	Structures Schedule	<u> 4</u>
<u>Structures</u>	Rocket Flight Simulation	<u>9</u>	Structures FMEA	<u>12</u>		
	Rocket Layout	<u>10</u>	Structures Expenditures	<u> 3</u>		
GNC –	<u>GNC Goals</u>	<u>16</u>	<u>Avionics Bay</u>	<u>19</u>		
	GNC Mission Profile	<u>17</u>	GNC Schedule	<u>20</u>		
	Systems Overview	18	GNC Expenditures	<u>21</u>		
Payload –	Goal and Mission Profile	<u>23</u>	Bill of Materials	<u>26</u>		
	Drone and Ground Station	<u>24</u>	Payload Schedule	27		
	Payload FMEA	<u>25</u>				

PROJECT OVERVIEW

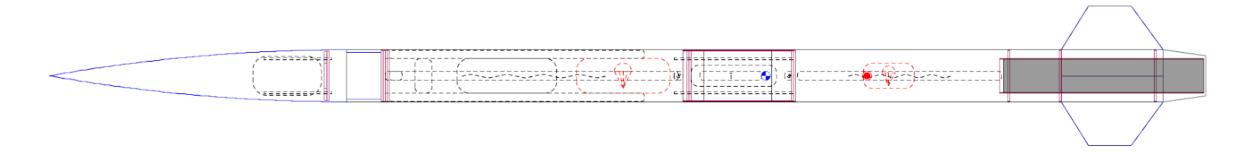
MISSION OBJECTIVE

Develop and launch a high-power rocket following similar procedures and guidelines as required by the Spaceport America Intercollegiate Rocket Engineering Competition. Included in this purpose are several goals:

- Develop a professional rocket capable of launching an eight-pound payload to a target apogee of 10,000 feet by March 30, 2021.
- Complete the minimal systems for base operation no later than February 27, 2021.
- Maintain high levels of professionalism and communication.
- Provide team members with real world engineering team-based work experience that can be referenced in internship and job interviews.

BUDGET

Feb. 27, 2021 Manufacturing Completed


Mar. 30, 2021 Launch Day

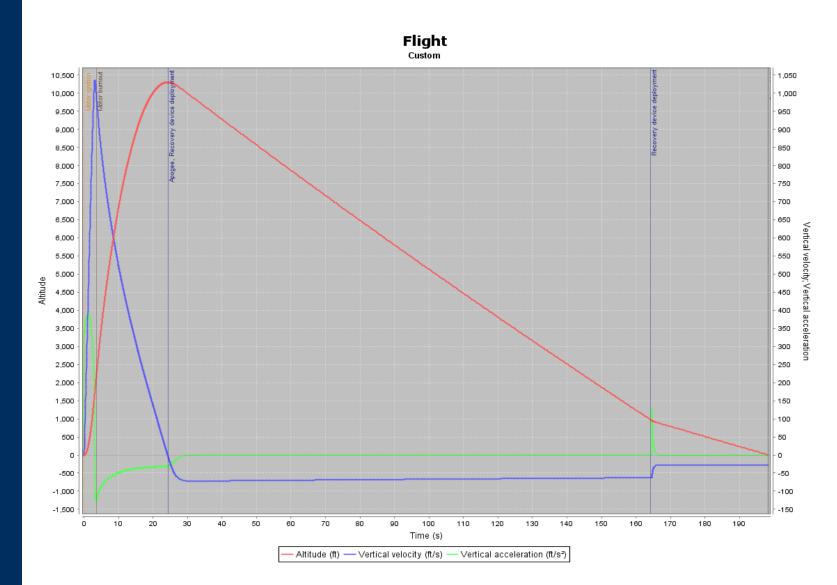
MAJOR MILESTONES

STRUCTURES

BRENNEN DOVER • JAYSON DAVIS • JOSH HALLIDAY

Length 136 in, max. diameter 6.1 in Mass with motors 768 oz

Stability: 1.95 cal CG84.267 in CP96.165 in


ROCKET DESIGN

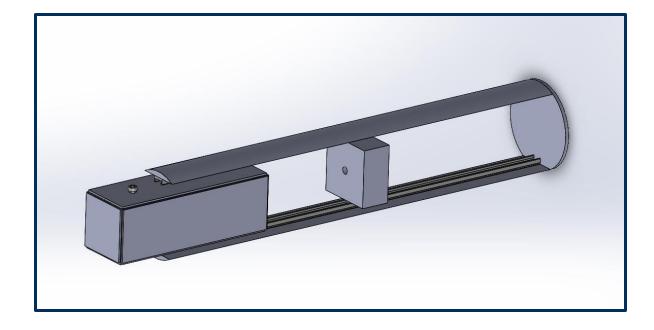
ROCKET FLIGHT SIMULATION

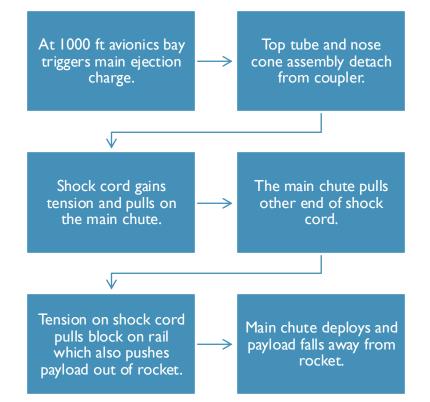
48.5 ft/s
1037 ft/s
390 ft/s ²
10304 ft
25.2 s
20.7 s
198 s
27.6 ft/s

M2400T

Motor Configuration:

(4) (12) (13) (14) (10) (1)


ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
1	Top Tube		1
2	Bottom Tube	1	1
3	Fin		4
4	Nose Cone		1
5	Centering Ring		3
6	Inner Tube		1
7	Motor	M2400T-P	1
8	Boat Tail	Also the motor retainer	1
9	Total Coupler Assem	Includes air brake assembly	1
10	Rail Assembly	Includes payload	1
11	Body tube Junction		1
12	GPS_Assembly		1
13	Bulkhead		2
14	Centering Ring Mount		2


ROCKET LAYOUT

(11

PAYLOAD EJECTION

						Failure Mo	des and Eff	ects Analys	is									
	2	ver Team Structur				40 in much	40	10 11					Revision:	1				
Owner:	Jayson Davis, E	rennen Dover, Jo	sh Halliday			10 is most Severity	10 most Likelihood	10 least Detectability				1	Date:	1/27/21				
						Seventy		Situation		Assigned		Improve	d Situation					
Main Custom	C	Functional Purpose	Failure Mode	Failure Effect	Cause	S	L	D	RPN	Action or Comments	S	Improved	D	RPN				
Main System	Component	Purpose	Failure Mode	Failure Effect			L	U	RPN	Comments	3	L	U	RPN				
		Adjusts CP and	Shearing off during flight	The rocket will lose guidance and cause possible missed altitude or lose of vehicle	Shearing forces on the fins overcome their attachment	8	2	8	128	Use fiberglass fins	8	1	8	64				
	Fins	provides stability	Breaking off	Vehicle will not be reusable aka the rocket will be broken	Landing too hard on the fin	5	2	10	100	epoxy fins to body tube and centering rings, ensure proper parechute sizing and	5	1	10	50				
					Shaking	6	2	4	48	Use foam for dampening	6	1	4	24				
		Secure GPS	Comes	GPS may become displaced inside the nose cause, may cause loss of signal which may cause loss of vehicle	Shock of landing	6	2	4	48	Effectively epoxy the rings	6	1	4	24				
	GPS Mount	equipment	off/loose		Force of take off	6	2	8	96	Effectively epoxy the rings	6	1	8	48				
					Shock of parachute deployments	6	2	7	84	Effectively epoxy the rings	6	1	7	42				
				Rocket will not fly straight and could lead to missed target altitude	Poor manufacturing	4	1	1	4	Quality control	4	1	1	4				
	Rail buttons	Directed rocket on launch			Damage preflight	5	1	1	5	Careful handling	5	1	1	5				
					Lunch rail breaks the buttons	4	1	10	40	Strong fastening methods	4	1	8	32				
				Bulkheads failing				Parachutes will not deploy, some or all of the vehicle could be lost	Material not strong enough for the load	10	2	7	140	Use fiberglass, test material stregnth and compare to expected load	10	1	6	60
	Motor mount	Holds the motor and transfers			poor manufacturing	8	1	1	8	Quality control	8	1	1	8				
Airframe		force	Motor falling out	Motor falls out and may damage the motor or a toe	motor retainer poorly attached	4	1	1	4	Effectively epoxy the rings	4	1	1	4				
			Motor going inside the rocket	The motor flies inside the rocket and destroys everything inside causing a lost of vehicle	bulkheads, inner tube, or motor casing lip failing	10	3	8	240	Effectively epoxy the rings	10	2	8	160				
			Zippering	Cord rips through the side of the rocket, damaging the vehicle	shock cord too short	7	2	8	112	Ensure correct length	7	1	8	56				
			Cracking	Forces on the rocket crack the body, damaging the vehicle	body tube not strong enough	10	1	10	100	Highly unlikely	10	1	10	100				

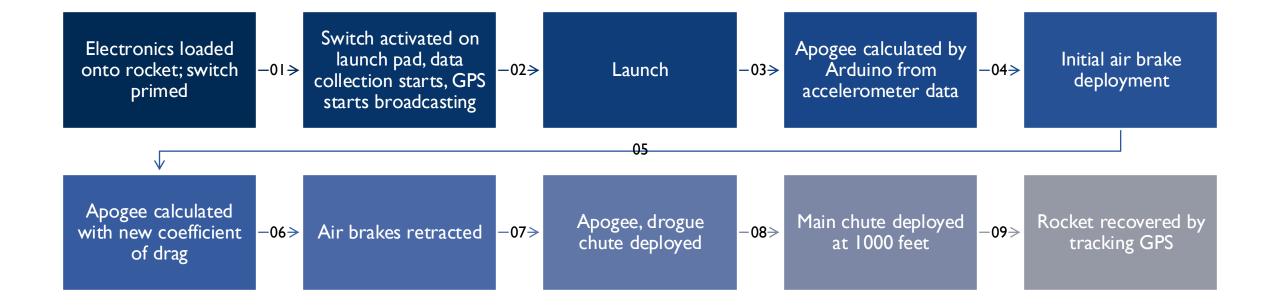
Additional Structures FMEA found here

STRUCTURES PARTS AND EXPENDITURE LIST

Part Name	Material	Source	Quantity	Total Cost
Nose cone	Fiberglass w/ aluminum tip	Madcow Rocketry	I	\$0.00
Body Tube (Top, Center, Bottom)	Carbon Fiber	Composites Lab	3	\$0.00
Fins	Fiberglass	McMaster Carr	4	\$50.00
Centering Rings/Bulkheads	Plywood	Hardware Store	3	\$25.00
Inner Tube	Blue Tube	Apogee Rockets	I	\$40.00
Rail Buttons	Aluminum	Machined	2	\$3.00
Shear Pins	Nylon	Lab	TBD	\$0.00
Boat Tail	Carbon Fiber Covered ABS	3D Printer/Composites Lab	I	\$50.00
Coupler	Blue Tube	Apogee Rockets	I	\$21.35
Ероху	N/A	Hardware Store	N/A	\$40.00
Epoxy Filler	N/A	Lab	N/A	\$0.00
Spray Paint	N/A	Hardware Store	N/A	\$20.00
TOTAL				\$249.35

Tail Cone Printed All Parts Ordered GPS mount ready to be cut	Fin and airbrake	ut and sanded slots cut into body tubes rilled in body tubes	Double check Finish outsta Decide on rock	nding tasks	Launch Day
	6 Feb.	20	Feb.	13 M	lar.
30 Jan.	I.	3 Feb.	27 F	eb.	30 Mar.
Centering rings cut Payload Deployment block cut GPS mount cut and epoxied in nose cone Tail cone reinforced with carbon fiber		Tail cone attached	ed with sensors in place with thermal sensor tons made and attached	Rocket design	completed

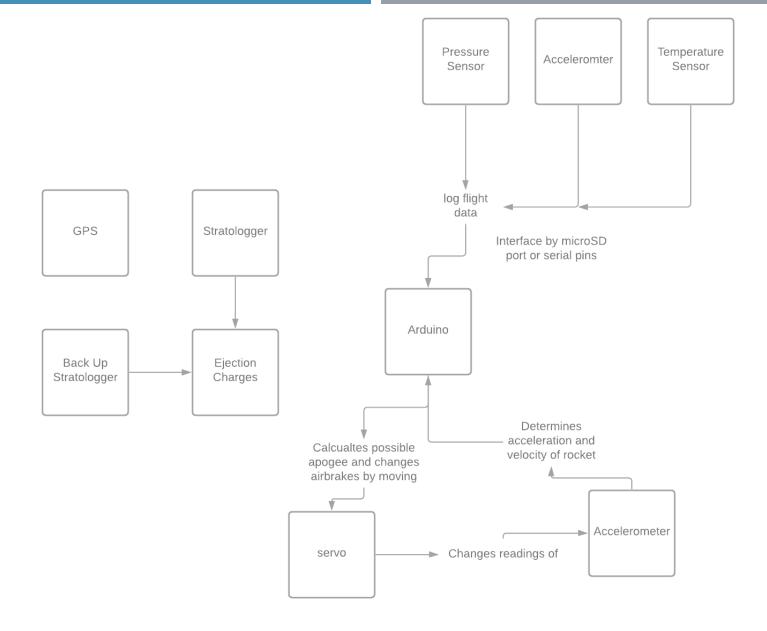
STRUCTURES SCHEDULE


GNC BRAYDEN SMITH • DERRICK WALKER • GREG HILL

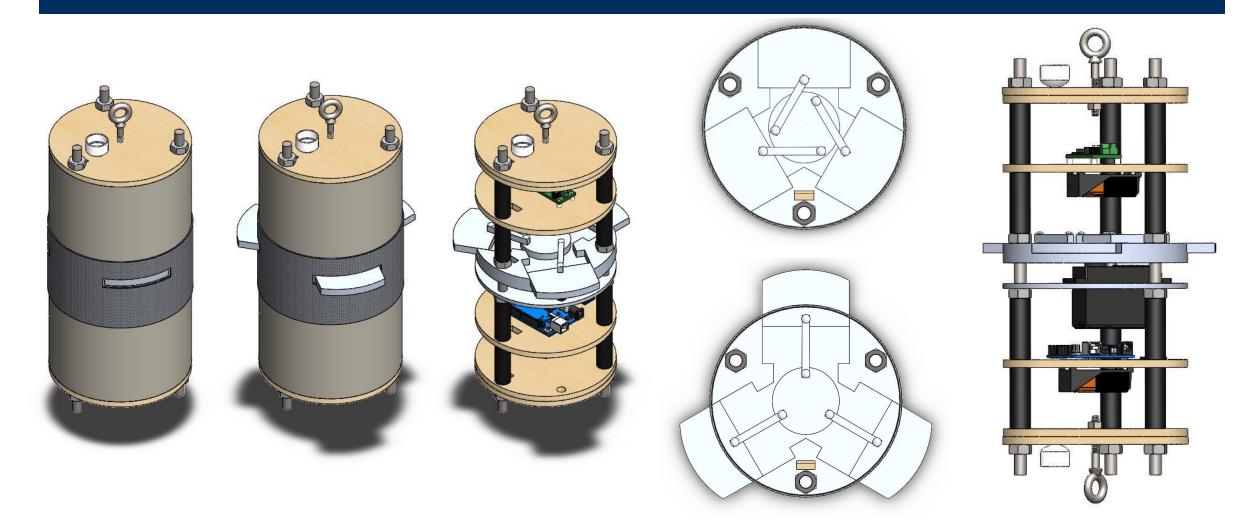
GNC GOALS

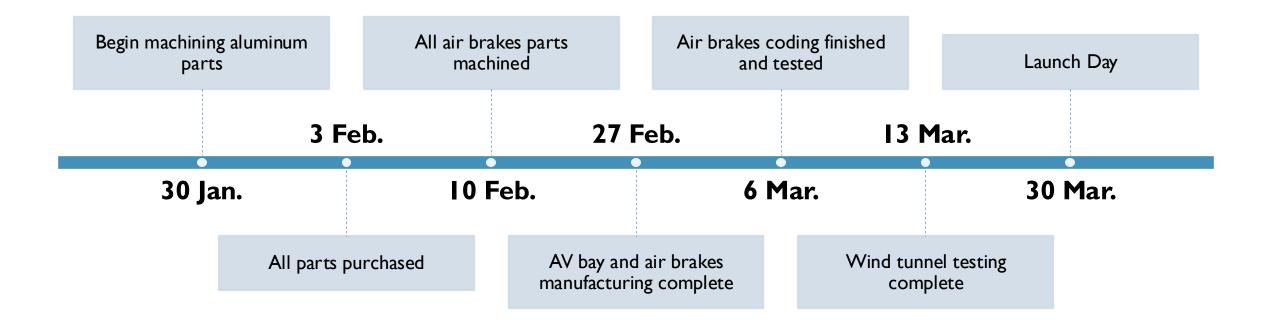
- Recover the rocket safely
- Air brakes design and implementation
- Gain an understanding of:
 - Relationship between high-powered rockets, their materials and their environment
 - Physical anomalies (stress, strain, vibration, temperature, pressure, etc.) that occur during flight
 - How to better optimize a rocket for flight
 - How to reduce failure points

GNC MISSION PROFILE



SYSTEMS OVERVIEW


Separation of jobs


Arduino in charge of data collection

Stratologger or Eggtimer Quantum Altimeter

AVIONICS BAY

GNC MANUFACTURING AND TESTING PLAN

GNC EXPENDITURE LIST

Part Name	Material	Source	Quantity	Total Cost
Main Parachute (96")	Ripstop Nylon	Top Flight Recovery LLC	I	\$150.00
Drogue Parachute (48'')	Ripstop Nylon	Top Flight Recovery LLC	I	\$56.00
Main Shock Cord (30')	2500 lb. 3 Loop Braided Kevlar	Rocketman Parachutes	I	\$48.00
Drogue Shock Cord (20')	1200 lb. 3 Loop Braided Kevlar	Rocketman Parachutes	I	\$23.50
Servo Motor	N/A	ECEn Shop	I	\$5.00
SEN0295 (pressure sensor)	N/A	Mouser	3	\$20.70
Thermocouple Amplifier MAX31855	N/A	Adafruit	I	\$15.00
Threaded Rod	Zinc Plated Steel	Home Depot	3	\$6.78
Eyebolt	Zinc Plated Steel	Home Depot	2	\$1.18
9V Battery	N/A	Home Depot	4	\$14.00
Wood	Birch Plywood	Home Depot	N/A	\$26.55
Pull Pin Kit	N/A	Lab Rat Rocketry	I	\$12.00
TOTAL				\$378.71

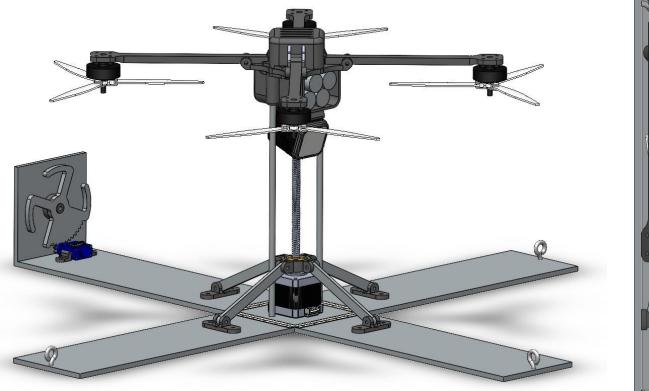
PAYLOAD BRANDON SUTHERLAND • DUNSTAN CHI

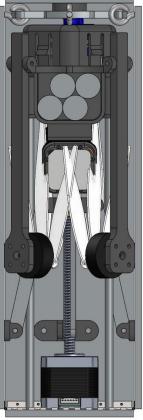
PAYLOAD GOAL AND MISSION PROFILE

Demonstrate the capabilities of a compact autonomous drone to fly and perform surveillance of surrounding terrain after transportation in a rocket.

Ground station containing drone is ejected from rocket with payload ejection system.

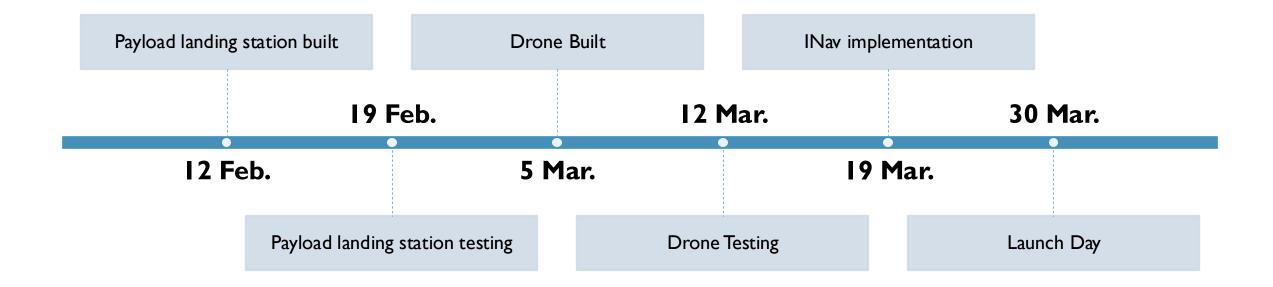
Ground station lands under personal parachute and opens, exposing and prepping drone for flight. 03


Drone awaits arm command after ground crew has established line of sight. 04

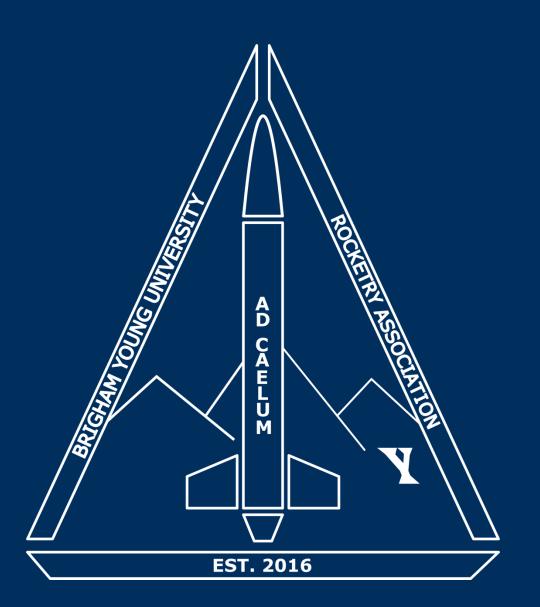

Once line of sight has been established, drone is armed remotely and begins autonomous survey of surrounding area with camera.

Once surveillance is complete, the drone will return to the ground station where the ground crew control will assume control of the drone and safely land it.

DRONE AND GROUND STATION



- Drone is contained in deployable ground station
- Ground station is equipped with parachute and automated release
- Lead-screw driven joints push station upright during unfolding
- Drone unfolds and flies free of ground station


					F	ailure Mo	des and Effe	cts Analysi	s						
System Name:	Junior High-Power 1	Feam Payload Sul	bteam										Revision:	2	
Owner:	Brandon Sutherland	, Dunstan Chi											Date:	1/26/21	
		Functional					Current	Situation		Assigned		Improve	d Situation		
Main System	Component	Purpose	Failure Mode	Failure Effect	Cause	S	L	D	RPN	Action or Comments	S	L	D	RPN	
		Provides runway for the	Payload fails to	Payload not	Parachute tangles with rocket.	5	6	7	210	Use chute release	5	2	7	70	
Deployment System	Rail System	payload to come out from the body tube.	eject from rocket.	deployed.	Shock cable tangles with payload.	5	4	8	160	Use chute release, keep shock cord well stored	5	2	7	70	
Drone	Battery	Supplies power to the drone.	Battery is shorted or punctured and ignites.	Payload catches fire and is unable to fly and/or is destroyed.	A component of the drone punchtures the battery during some moment of the flight.	9	2	8	144	Use protective case for the battery	9	1	8	72	
			Fails to interface with flight controller.	No telemetry data transmitted or recieved, preventing flight.	Flight controller software refuses to connect or provide flight data.	7	5	6	210	Test enough to ensure smooth connection, and be prepared for possible software failure	7	2	6	84	
	Telemetry Communication	Gives information to the ground crew on the progress of the flight.	Bives mation to ground w on the ess of the	No telemetry data transmitted or	Wireless connection is lost due to too much range.	7	9	2	126	Figure out the max range for the telemetry system and create flight path well within it.	7	3	2	42	
					Software does not cooperate and refuses the connection.	7	6	4	168	Test enough to ensure smooth connection, and be prepared for possible software failure	7	3	3	63	
	Frame	Composes the majority of the drone, allows for proper flight.	majority of the drone, allows	Arms do not fold up during deployement.	Drone may not be able to take off.	Props get caught and prevent the arms from unfolding.	6	5	6	180	Use strong enough torsional springs to ensure the arms do not get caught	6	3	4	72
			Fails to control the propusion system for proper flight.	Drone cannot fly, or crashes during flight.	Malfunctioning electronics or software.	9	3	5	135	Use highly reliable hardware and software	9	2	3	54	
	Software navigation systems	Controls the direction flying of the drone during atonomous flight. Dictates the path of the drone.	Stops directing the drone during flight.	Surveylance is not accomplished as wanted, and/or drone is lost entirely.	Software failsafes or cancels through other means.	7	3	7	147	Use highly reliable hardware/softw are, perform test runs beforehand	7	2	5	70	

Additional Payload FMEA found here

System	Part Name	Model	Cost	Quantity	Total Cost
Drone	Propellers, two sets	Dalprop F7 Foldable Props	\$4.99	2	\$9.98
	Motors	iFlight XING Camo X2207 Motor	\$22.99	4	\$91.96
	Flight Controller & ESC	MAMBA F405 MK2 Betaflight Flight Controller	\$45.99	1	\$45.99
	Radio Telemetry & Transmitter	FPVDrone 3DR Radio Telemetry Kit	\$28.59	1	\$28.59
	Frame	Custom	\$30.00	1	\$30.00
	Battery	Custom Li-Ion 4s 1500 mAh battery	\$40.00	1	\$40.00
	GPS	Matek M8Q-5883 GPS Module	\$29.99	1	\$29.99
	Reciever	FrSky R-XSR	\$0.00	1	\$0.00
	HD Camera	Gopro Session 5	\$0.00	1	\$0.00
	Random Hardware		\$15.00	1	\$15.00
Deployment Station	Parachute	60" Parachute	\$22.00	1	\$22.00
	Servo	MG995 High Torgue Metal Gear Analog Servo	\$5.59	1	\$5.59
	Sheet Metal		\$15.00	1	\$15.00
	Microcontroller	Raspberry Pi Zero W	\$10.00	1	\$10.00
	Stepper Motor	NEMA 17	\$14.00	1	\$14.00
	Misc Hardware		\$20.00	1	\$20.00
	Trapozoidal Thread rod		\$9.59	1	\$9.59
Total					¢207.60
Total					\$387.69
Remaining out of \$450					\$62.31

PAYLOAD MANUFACTURING AND TESTING PLAN

